Abstract
Neuroimaging-based brain age prediction using deep learning is gaining popularity. However, few studies have attempted to leverage diffusion tensor imaging (DTI) to predict brain age. In this study, we proposed a 3D convolutional neural network model (3DCNN) and trained it on fractional anisotropy (FA) data from six publicly available datasets (n = 2406, age = 17-60) to estimate brain age. Implementing a two-loop nested cross-validation scheme with a tenfold cross-validation procedure, we achieved a robust prediction performance of a mean absolute error (MAE) of 2.785 and a correlation coefficient of 0.932. We also employed Grad-Cam++ to visualize the salient features of the proposed model. We identified a few highly salient fiber tracts, including the genu of corpus callosum and the left cerebellar peduncle, among others that play a pivotal role in our model. In sum, our model reliably predicted brain age and provided novel insight into age-related changes in brains' axonal structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.