Abstract

Abstract Deep learning (DL)-based prediction of biological age in the developing human from a brain magnetic resonance imaging (MRI) (“brain age”) may have important diagnostic and therapeutic applications as a non-invasive biomarker of brain health, aging, and neurocognition. While previous deep learning tools for predicting brain age have shown promising capabilities using single-institution, cross-sectional datasets, our work aims to advance the field by leveraging multi-site, longitudinal data with externally validated and independently implementable code to facilitate clinical translation and utility. This builds on prior foundational efforts in brain age modeling to enable broader generalization and individual’s longitudinal brain development. Here, we leveraged 32,851 T1-weighted MRI scans from healthy children and adolescents aged 3 to 30 from 16 multisite datasets to develop and evaluate several DL brain age frameworks, including a novel regression diffusion DL network (AgeDiffuse). In a multisite external validation (5 datasets), we found that AgeDiffuse outperformed conventional DL frameworks, with a mean absolute error (MAE) of 2.78 years (interquartile range [IQR]: [1.2-3.9]). In a second, separate external validation (3 datasets), AgeDiffuse yielded an MAE of 1.97 years (IQR: [0.8-2.8]). We found that AgeDiffuse brain age predictions reflected age-related brain structure volume changes better than biological age (R2 = 0.48 vs. R2 = 0.37). Finally, we found that longitudinal predicted brain age tracked closely with chronological age at the individual level. To enable independent validation and application, we made AgeDiffuse publicly available and usable for the research community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call