Abstract

3D spatially-resolved polychromatic microdiffraction was used to nondestructively obtain depth-dependent elastic strain gradients and dislocation densities in the constituent phases of a directionally solidified NiAl–Mo eutectic composite consisting of ∼500–800 nm Mo fibers in a NiAl matrix. Measurements were made before and after the composite was compressed by 5% and 11%. The Mo fibers were analyzed both in their embedded state and after the matrix was etched to expose them as pillars. In the as-grown composite, due to differential thermal contraction during cooldown, the Mo phase is under compression and the NiAl phase is in tension. After the prestrains, the situation is reversed with the Mo phase in tension and NiAl matrix in compression. This result can be explained by taking into account the mismatch in yield strains of the constituent phases and the elastic constraints during unloading. The dislocation density in both the Mo and NiAl phases is found to increase after prestraining. Within experimental uncertainty there is little discernible difference in the total dislocation densities in the Mo phase of the 5% and 11% prestrained specimens. However, the density of the geometrically necessary dislocations and the deviatoric strain gradients increase with increasing prestrain in both the Mo and NiAl phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call