Abstract
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.