Abstract

A 3D full-field optical system for high frequency vibration measurement is proposed. The system is composed of a single low-frame-rate camera and two planar mirrors. This compact optical setup overcomes the typical drawback of capturing synchronous acquisitions in the case of a camera pair. Moreover, planar mirrors allow for the use of the classical pinhole model and, thus, conventional stereo-calibration techniques. The use of a low-frame-rate camera provides on the one hand a high-resolution sensor with a relatively low-cost hardware but imposes, on the other, the adoption of a down-sampling approach, which is applicable only when a single (known) sinusoidal load is applied to the structure. The effectiveness of the proposed setup has been verified by the 3D vibration measurement of two different targets up to a frequency of 1 kHz, corresponding to a displacement amplitude of 0.01 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call