Abstract

This work presents a novel design of a new 3D user interface for an immersive virtual reality desktop and a new empirical analysis of the proposed interface using three interaction modes. The proposed novel dual-layer 3D user interface allows for user interactions with multiple screens portrayed within a curved 360-degree effective field of view available for the user. Downward gaze allows the user to raise the interaction layer that facilitates several traditional desktop tasks. The 3D user interface is analyzed using three different interaction modes, point-and-click, controller-based direct manipulation, and a gesture-based user interface. A comprehensive user study is performed within a mixed-methods approach for the usability and user experience analysis of all three user interaction modes. Each user interaction is quantitatively and qualitatively analyzed for simple and compound tasks in both standing and seated positions. The crafted mixed approach for this study allows to collect, evaluate, and validate the viability of the new 3D user interface. The results are used to draw conclusions about the suitability of the interaction modes for a variety of tasks in an immersive Virtual Reality 3D desktop environment.

Highlights

  • The field of Virtual Reality (VR) has been an area of interest for both research and development for the past five decades

  • The user-interaction paradigm for VR is an extension of how people interact with the computing systems using a graphical user interface (GUI)

  • The concept of GUI revolves around the concept of direct manipulation (DM), where the user uses some input device to directly manipulate the content on a two-dimensional (2D) display, and receives an immediate feedback of its action, e.g., point and click, dragging, etc

Read more

Summary

Introduction

The field of Virtual Reality (VR) has been an area of interest for both research and development for the past five decades. The concept of GUI revolves around the concept of direct manipulation (DM), where the user uses some input device to directly manipulate the content on a two-dimensional (2D) display, and receives an immediate feedback of its action, e.g., point and click, dragging, etc. The VR on the other hand is a different medium, where the content is displayed in a true three-dimensional (3D) environment, and because of the VR device, the user loses the ability to directly observe the input devices, e.g., mouse and the keyboard, which renders the current DM user interface paradigm not well suited for 3D immersive VR environments. For an immersive VR environment, it is necessary to explore different types of user interface paradigms that are better suited for natural user interaction (NUI) without means of a physical input device. A natural user interface (NUI) allows people to interact with the technology without the need of intermedial devices for the

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.