Abstract

Due to unique properties such as hardness, or a low friction coefficient, amorphous silicon carbide films are attractive for mechanical applications. Even if plasma assisted chemical vapor deposition processes are now commonly used for the growth of such coatings, mechanisms leading to their formations are not completely understood. However, the substrate temperature is considered as one of the key-parameters for this technique. Then in order to provide an effective predictive simulation tool or to determine optimal control procedures, a 3D thermal modeling of the plasma assisted chemical vapor deposition process has to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.