Abstract

Wear particle analysis can be developed as an effective method for assessment of the running conditions of concaved cylinder liners. The aim of this study was to numerically characterize the topographical features of wear particles generated from different surface textured cylinder liners and to investigate their changes with alternations in both rotational speeds and surface textures. To achieve this goal, cylinder liners with three different surface textures were prepared and tested in four different speeds. In addition to an untreated surface, concave cylinder liner surfaces with two different diameters (1 and 2 mm) and two different depths (200 and 300 μm) were investigated. Wear particles were extracted from the lubrication oil; three-dimensional images of the wear debris were acquired using laser confocal microscopy; and their topographical features were analyzed quantitatively. This study has revealed that running-in conditions and stable state can be detected using wear debris analysis techniques at a micrometer scale. It has also been discovered that concave B cylinder liner with a depth–diameter ratio of 0.1 always generated wear particles different to those from the other two cylinder liners on each rotational speed. It is believed that the quantitative surface topography characterization results obtained in this study provide a practical base for developing a new, non-intrusive tool for monitoring the operation conditions of cylinder liner–piston rings in diesel engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call