Abstract
Fatigue driving has become one of the main causes of traffic accidents, and driving fatigue detection based on electroencephalogram (EEG) can effectively evaluate the driver's mental state and avoid the occurrence of traffic accidents. This article evaluates a feature extraction method for extracting multiple features of EEG signals and establishes a spatiotemporal convolutional neural network (STCNN) to detect driver fatigue. Firstly, we constructed a three-dimensional feature of the EEG signal, which includes the frequency domain, time domain, and spatial features of the EEG signal. Then, we use STCNN for fatigue state classification. STCNN is composed of an attention time network based on attention mechanism and an attention convolutional neural network based on attention mechanism. In addition, we conducted fatigue driving experiments and collected EEG signals from 14 subjects in both awake and fatigued states, ultimately collecting EEG data under three different driving task loads. We conducted extensive experiments on this basis and compared the effectiveness of STCNN and six competitive methods. The results show that the classification accuracy of STCNN is 87.55%, which can effectively detect the fatigue status of drivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.