Abstract

Sleep staging is an important method to diagnose and treat insomnia, sleep apnea, and other sleep disorders. Compared with the multi-channel automatic sleep staging system, the single-channel EEG signal contains less information, and the traditional single analysis domain feature parameter extraction algorithm cannot meet the requirement of sleep stage classification accuracy. To solve this problem, we propose an automatic sleep staging method based on the combination of time-domain and frequency-domain features based on single-channel EEG signals. Empirical mode decomposition is used to decompose EEG signals in the time domain to obtain the decomposed signals at different time scales. Multiple local features are extracted from each decomposed signal. The frequency-domain features of EEG signals are obtained by using the frequency domain decomposition of EEG signals in various rhythms. The time-domain and frequency-domain decomposition features are combined into eigenvectors and selected for sleep staging. The experimental results show that the sleep staging method proposed in this paper with time-frequency domain features of single-channel EEG signals can approach the accuracy of sleep staging of multi-channel signals on the same data set, and superior to the sleep staging method with the same single-channel EEG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.