Abstract

The transferred arc plasma torch device consists of two electrodes generating a plasma arc sustained by means of an electric current flowing through the body of the discharge. Modelling works investigating transferred electric arc discharges generated between two suspended metallic electrodes, in the so-called twin torch configuration, are scarce. The discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics and needs a 3D description in order to be realistically predicted. The extended discharge length that goes from the tungsten pencil cathode to the flat copper anode without any particular confinement wall and the fluid dynamics and magnetic forces acting on the arc may induce an unsteady behaviour. In order to capture the dynamic behaviour of a twin torch discharge, a 3D time-dependent plasma arc model has been developed using a customized commercial code FLUENT form in both local thermodynamic equilibrium (LTE) and non-LTE. A two temperature (2T) model has been developed taking into account only the thermal non-equilibrium effects in argon plasma. The main differences between LTE and 2T models' results concern the increased extension of the horizontal section of the discharge and the predicted reduced (of about 60–80 V) voltage drop between the electrodes when using a 2T model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.