Abstract

Visible, near-infrared and shortwave-infrared (VNIR–SWIR) spectroscopy has proven to be an efficient, rapid and low-cost method for soil spectral analysis that can improve on the results obtained from today's traditional methods of conducting soil surveys. Nonetheless, this tool is used mostly in the laboratory and at surface level. The main objective of this paper is to develop a new optical method for characterizing soil profiles, towards improving the efficiency and accuracy of the traditional soil survey. We used airborne hyperspectral data from the AisaFENIX sensor for surface classification and ASD spectral measurements of soil samples for subsurface analysis. A total of 643 soil samples were extracted from 48 cores, each core representing a soil profile. All samples were air-dried, crushed and sieved, and then analyzed by ASD spectrometer under laboratory conditions. Clay content was also measured to provide additional information. The 3D spectral data were analyzed using SAM algorithm, spectral gradient (m), k-means clustering and gley horizon parameter (G) to classify soils and distinguish between soil horizons in each core. The results suggest that these parameters can provide satisfactory results both from laboratory measurements and hyperspectral remote sensing data (R2=0.81 for clay content and R2=0.78 for gleying conditions) in order to distinguish between the soil horizons using 3D spectral information. Moreover, the method is satisfactory for obtaining soil types from 3D spectral sensing as well as evaluating the catena development and other spatial soil distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.