Abstract

In this study, smoke evacuation in two kinds of subway station platform models, namely: an island platform station and a two side platforms station is simulated in a three-dimensional configuration. FDS 6.1.1 (Fire Dynamic Simulator) software has been employed to perform numerical simulations. The results showed noticeable effects of platform architecture on the process of smoke evacuation and emission spreading. The location of the connecting stairs (station accesses) between floors in both types of subway stations, installing the walls around these stairs in island platform type, the presence or absence of fireproof and antismoke curtains in suitable areas in two side platforms type have significant impacts on the smoke spreading. At the end, after the comparison between smoke dispersion in these two types of subway's platform, different architecture corrections were suggested and evaluated. Overall, it is concluded that an island platform station is more challenging in smoke control point of view, because the openings at the ceiling of the platform (stairway path) provide a convenient space for smoke to escape to the upper floors. In summary station architecture and even the smallest architectural changes at a subway station can change the smoke dispersion in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.