Abstract
For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.