Abstract

It is expected that ionic liquids will be used in the future as electrolytes for electric double layer capacitors, but currently microencapsulation with a conductive or porous shell is required for their fabrication. Here, we succeeded in fabricating a transparently gelled ionic liquid trapped in hemispherical silicone microcup structures just by observing with a scanning electron microscope (SEM), which allows the microencapsulation process to be eliminated and electrical contacts to be formed directly. To see the gelation, small amounts of ionic liquid were exposed to the SEM electron beam on flat aluminum, silicon, silica glass, and silicone rubber. The ionic liquid gelled on all the plates, and a color change to brown was observed on all the plates except for silicone rubber. This change might be caused by reflected and/or secondary electrons from the plates producing isolated carbon. Silicone rubber could remove the isolated carbon due to the large amount of oxygen inside it. Fourier transform infrared spectroscopy revealed that the gelled ionic liquid included a large amount of the original ionic liquid. Moreover, the transparent, flat gelled ionic liquid could also be made into three-layer structures on silicone rubber. Consequently, the present transparent gelation is suitable for silicone rubber-based microdevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.