Abstract

Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $( . Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\mathrm{I}_{\mathrm{on}}-\mathrm{I}_{\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.