Abstract

Direct comparison of experimental and theoretical results in biomechanical studies requires a careful reconstruction of specimen surfaces to achieve a satisfactory congruence for validation. In this paper a semi-automatic approach is described to reconstruct triangular boundary representations from images originating from, either histological sections or μCT-, CT- or MRI-data, respectively. In a user-guided first step, planar 2D contours were extracted for every material of interest, using image segmentation techniques. In a second step, standard 2D triangulation algorithms were used to derive high quality mesh representations of the underlying surfaces. This was accomplished by converting the 2D meshes into 3D meshes by a novel lifting procedure. The meshes can be imported as is into finite element programme packages such as Marc/Mentat or COSMOS/M. Accuracy and feasibility of the algorithm is demonstrated by reconstructing several specimens as examples and comparing simulated results with available measurements performed on the original objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.