Abstract

A three-coordinate heterodyne laser interferometer has been developed to measure the displacement of the probe microscope scanner with a subnanometer resolution that provides traceability of measurements to the standard of meter through the wavelength of a stabilized He-Ne laser. Main sources of errors are investigated, and their influence is minimized so that the resulting measurement uncertainty of the system does not exceed 0.2nm, and the resolution is 0.01nm. The investigation of metrological characteristics of the three-coordinate interferometer was carried out with a scanning probe microscopy (SPM) NanoScan-3D using TGZ-type calibration gratings. The values measured with SPM fell within the 95% confidence interval given by Physikalisch-Technische Bundesanstalt (PTB) (Germany). SPM equipped with a laser interferometer was used to measure the characteristics of dynamic etalons of geometric dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call