Abstract

AbstractSoft magnetic structures having a non‐uniform magnetization profile can achieve multimodal locomotion that is helpful to operate in confined spaces. However, incorporating such magnetic anisotropy into their body is not straightforward. Existing methods are either limited in the anisotropic profiles they can achieve or too cumbersome and time‐consuming to produce. Herein, a 3D printing method allowing to incorporate magnetic anisotropy directly into the printed soft structure is demonstrated. This offers at the same time a simple and time‐efficient magnetic soft robot prototyping strategy. The proposed process involves orienting the magnetized particles in the magnetic ink used in the 3D printer by a custom electromagnetic coil system acting onto the particles while printing. The resulting structures are extensively characterized to confirm the validity of the process. The extent of orientation is determined to be between 92% and 99%. A few examples of remotely actuated small‐scale soft robots that are printed through this method are also demonstrated. Just like 3D printing gives the freedom to print a large number of variations in shapes, the proposed method also gives the freedom to incorporate an extensive range of magnetic anisotropies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.