Abstract
The review focuses on the progressive role of 3D-printing in dentistry, particularly emphasizing the use of zirconia-based and lithium disilicate (LS2) -based ceramic materials. Celebrated for their biocompatibility and esthetic resemblance to natural teeth, these materials have shown promising results with high success rates. Digital light processing (DLP) and stereolithography (SLA) have been noted for producing superior 3D-printed ceramic products. Despite facing challenges such as surface defects, mechanical strength limitations, and esthetic inconsistencies, active research is dedicated to refining the quality and esthetics of 3D-printed zirconia-based and LS2-based ceramics. The review acknowledges the need to mitigate the steep costs of this manufacturing form and recognizes the current shortfall in clinician and technician awareness of these advanced techniques. Addressing these issues through focused research on improving surface quality, dimensional accuracy, and mechanical properties of 3D-printed dental prostheses is crucial, as is enhancing the dental community's understanding and acceptance of this innovative technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have