Abstract

Superlubricity is a fascinating phenomenon which attracts people to continuously expand ultralow friction and wear from microscale to macroscale. Despite the impressive advances in this field, it is still limited to specific materials and extreme operating conditions. Introducing a heterostructure with intrinsic lattice mismatch into delicate topologies mimicked from nature provides a promising alternative toward macroscopic superlubricity. Herein, 3D-printed MoS2/MoSe2 heterostructures with bioinspired circular-cored square/hexagonal honeycomb topologies were developed. Compared to 3D-printed Al2O3, all topological structures with both high hardness and excellent flexural strength achieve more than 30% decrease in the friction coefficient. The circular-cored hexagonal honeycomb composite with 30% area density exhibits a stable ultralow friction coefficient of 0.09 and a low wear rate of 2.5 × 10-5 mm3·N-1 m-1 under 5 N. Even under 10 N, a highly desirable coefficient value of 0.08 can be maintained within 370 s. The extraordinary ultralow friction could be attributed to the small contact area, high lubricant mass loading, efficient collection and storage of both abrasive debris and lubricant, and the self-orientation in the lubricating film. This work provides new insights into developing high-efficiency lubrication devices and aids in the industrial application of macroscopic superlubricity in future life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.