Abstract

Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.

Highlights

  • The treatment approach to bone injury and degeneration remains a critical challenge, autografting continues as the clinical gold standard treatment option [1,2,3]

  • To precipitate the bacterial cellulose membrane, the centrifuge was operated at 6000 rpm for 15 min at 20 ◦ C

  • The bacterial cellulose membrane suspension washed with deionized water and centrifuged several times

Read more

Summary

Introduction

The treatment approach to bone injury and degeneration remains a critical challenge, autografting continues as the clinical gold standard treatment option [1,2,3]. Instead of a single-use of natural (e.g., collagen, gelatin, alginate, hyaluronic acid, and chitosan) synthetic polymers (e.g., PLGA, PLA, and polycaprolactone (PCL)) and bioceramics (the calcium phosphates (Ca/P) as hydroxyapatite (HAp), the bioactive glasses and the glass-ceramics), composite forms of them have been widely used for bone tissue engineering [4,5] Compared with these natural materials, bacterial cellulose nanocrystal (BC) has much higher mechanical properties, which are required in most cases when used as a scaffold in bone tissue engineering There are remarkable features of bacterial cellulose that make it applicable in bone tissue engineering: biocompatibility, promoting cellular interactions and tissue development, having interconnected porous structure and significant effects on cell adhesion and proliferation, high purity level, microporosity, biodegradability, bio-absorbable, non-toxicity, resembling extracellular matrix of living tissue, and crystallinity [6,7,8,9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call