Abstract

Three-dimensional (3D) printing is a bio-fabrication technique used to process tissue-engineered scaffolds for bone repair and remodeling. Polycaprolactone (PCL)/β-tricalcium phosphate (TCP) has been used as a base and osteoconductive biomaterial for bone tissue engineering in the past decades. The current study reveals the fabrication of a polycaprolactone (PCL)/β-tricalcium phosphate (TCP) scaffold by incorporating carbon nanotubes (CNT) via 3D printing. The physical properties and cytocompatibility of a new type of tissue engineering composite from polycaprolactone/β-tri-calcium phosphate/carbon nanotubes were investigated, and it was an absorbable scaffold prepared via furnace deposition 3D printing technology. The scaffold was designed with CAD software, and the composite material was fabricated via 3D printing. The printed composite material was tested for mechanical strength, scanning electron microscope (SEM) analysis, porosity calculation, systemic toxicity test, hemolysis rate determination, and effect on the proliferation of rat adipose-derived stem cells cultured in vitro. A composite scaffold with a length of 15 mm, width of 10 mm, and height of 5 mm was manufactured through CAD software drawing and 3D printing technology. Scanning electron microscopy measurements and analysis of the internal pore size of the stent are appropriate; the pores are interconnected, and the mechanical strength matches the strength of human cancellous bone. The calculated porosity of the stent was >60%, non-toxic, and non-hemolytic. The proliferation activity of the ADSC co-cultured with different scaffold materials was as follows: polycaprolactone/β-tricalcium phosphate/0.2% carbon nanotube scaffolds > polycaprolactone/β-tricalcium phosphate/0.1% carbon nanotube scaffolds > polycaprolactone/β-tricalcium phosphate/0.3% carbon nanotube scaffolds > polycaprolactone/β-tricalcium phosphate scaffolds (P < 0.05). The results showed that polycaprolactone/β-tricalcium phosphate/0.2% carbon nanotube scaffolds promoted the adhesion and proliferation of ADSC. The combination of 3D printing technology and CAD software can be used to print personalized composite stents, which have the characteristics of repeatability, high precision, and low cost. Through 3D printing technology, combining a variety of materials with each other can provide the greatest advantages of materials. The waste of resources was avoided. The prepared polycaprolactone/β-tri-calcium phosphate/0.2% carbon nanotube scaffold has a good pore structure and mechanical properties that mimic human cancellous bone, is non-toxic and non-hemolytic, and is effective in promoting ADSC proliferation in vitro. Given this correspondence, 3D printed scaffold shows good biocompatibility and strength, and the fabrication method provides a proof of concept for developing scaffolds for bone tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.