Abstract

3D porous PLA-graphite composite scaffolds are recently introduced as promising candidates in tissue engineering practices owing to their significantly enhanced mechanical strength in comparison with pure PLA. However, they mainly suffer from low degradation rate as well as undesirable hydrophobic surface. In this regard and to address such challenges, Mg particles, as one of the lightest metallic fillers, were added to PLA-graphite scaffolds via the fused deposition modeling (FDM) technique. The obtained results indicated that introduction of 1 wt% Mg inhibited polymeric chain mobility of PLA, and hence, increased the glass transition temperature. Also, Mg particles behaved as nucleating agents, thus crystallization temperature was decreased. Compression and tensile tests demonstrated an enhanced trend in strength with the incorporation of Mg. Notably, the hydrophobic surface of PLA-graphite scaffold changed to a hydrophilic surface with the addition of Mg, which also led to a higher degradation rate of Mg-incorporated PLA-graphite composite scaffolds. The obtained results indicated the beneficial effects of Mg in tackling the challenges of PLA-graphite scaffolds for bone tissue applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.