Abstract

Process sustainability of biocatalytic processes is significantly empowered with the use of continuous-flow technologies that offer high productivity, minimal wastes and low volumetric consumption. Combining microreactor design with 3D printing technology can broaden the engineering potentials. This work proposes a protocol to modify the surface of 3D-printed PLA scaffolds, based on chitosan deposition. Mimicking the concept of microplates, multi-well plates were designed to facilitate parameter testing. Immobilization of laccase from Trametes versicolor was successfully performed, while chitosan and cross-linker concentration and incubation time were optimized. Τhe developed protocol was applied for the continuous flow bioconversion of hydroxyyrosol, yielding a TTN of 438.6 × 103 for a total of 10 h continuous use. Also, a peristaltic flow pattern seemed to favor the system performance, reaching 95% bioconversion efficiency in a total of 1 h reaction time. The potential of the developed system was further evaluated for the biotransformation of different biophenols from dietary sources, proving the efficiency of the system as a versatile biotechnological tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call