Abstract

Bacterial-infected wound repair has become a significant public health concern. This study developed a novel 3D-printed piezocatalytic SF-MA/PEGDA/Ag@BT (SPAB) hydrogels were fabricated by using digital light processing. These hydrogels exhibited high consistency, mechanical properties and good biocompatibility. Besides, the SPAB hydrogels exhibited excellent piezocatalytic performance and thus could induce piezoelectric polarization under ultrasound to generate reactive oxygen species (ROS). The SPAB hydrogels possessed an antibacterial rate of 99.23% and 99.96% for Escherichia coli and Staphylococcus aureus, respectively, under 5 min of ultrasonic stimulation (US) in vitro. The US-triggered piezocatalytic performance could increase antibacterial activity and improve the healing process of the infected wound. Therefore, the 3D printed piezocatalytic SPAB hydrogels could be unutilized as wound dressing in the field of bacterial-infected wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call