Abstract

Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures. Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inksto achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employedfor macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call