Abstract

The current foodborne pathogen detection methods, such as culture-based methods, polymerase chain reaction, and optical and electrochemical biosensors with nucleic acid, have high sensitivity and selectivity. However, they are slow, expensive, and require well-trained operators. In this study, we utilized a 3D printer to develop a novel chip with an aptamer-based nanointerferometer capable of identifying four distinct foodborne pathogens: Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. The aptamer sensor on the chip achieved a limit-of-detection of 10 colony forming unit (CFU)/ml. With its high sensitivity and specificity, this chip offers a cost-effective platform for distinguishing and screening different foodborne pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.