Abstract

Metal-organic frameworks (MOFs) have shown promising performance in separation, adsorption, reaction, and storage of various industrial gases; however, their large-scale applications have been hampered by the lack of a proper strategy to formulate them into scalable gas-solid contactors. Herein, we report the fabrication of MOF monoliths using the 3D printing technique and evaluation of their adsorptive performance in CO2 removal from air. The 3D-printed MOF-74(Ni) and UTSA-16(Co) monoliths with MOF loadings as high as 80 and 85 wt %, respectively, were developed, and their physical and structural properties were characterized and compared with those of MOF powders. Our adsorption experiments showed that, upon exposure to 5000 ppm (0.5%) CO2 at 25 °C, the MOF-74(Ni) and UTSA-16(Co) monoliths can adsorb CO2 with uptake capacities of 1.35 and 1.31 mmol/g, respectively, which are 79% and 87% of the capacities of their MOF analogues under the same conditions. Furthermore, a stable performance was obtained for self-standing 3D-printed monolithic structures with relatively good adsorption kinetics. The preliminary findings reported in this investigation highlight the advantage of the robocasting (3D printing) technique for shaping MOF materials into practical configurations that are suitable for various gas separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.