Abstract

3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.