Abstract

Additive manufacturing, also known as 3D-printing, is receiving great interest by chemists due to the easy design of novel materials, fast prototyping and reducing waste, which enables large-scale fabrication of electrochemical devices. Herein we demonstrate the development of (bio)sensors for the analysis of biological fluids using 3D-printing. Fused deposition modelling was used to fabricate (bio)sensing platforms from commercially-available filaments made of polylactic acid containing graphene (G-PLA). An enzymatic glucose biosensor fabricated on the G-PLA surface was developed and applied for glucose sensing in blood plasma using chronoamperometry. Oxygenated groups from the polymeric matrix provides suitable condition to enzyme immobilization by crosslinking with glutaraldehyde. The biosensor presented a limit of detection (LOD) of 15 μmol L−1, inter-day and intra-day precision lower than 5 %, and adequate recovery values (90–105 %) for the analysis of plasma. We also show that the surface treatment of the 3D-printed sensor (mechanical polishing followed solvent immersion) provides improved electrochemical properties for the direct detection of nitrite and uric acid. Differential-pulse voltammetry and multiple-pulse amperometry under flow conditions were evaluated and compared for the determination of both species in saliva and urine. Highlights are presented for the amperometric detection within a linear range from 0.5–250 μmol L−1 for both analytes, LODs of 0.02 and 0.03 μmol L−1 for uric acid and nitrite, respectively, and high precision (RSD < 2.1 %). This report shows the first application of 3D-printed sensors and biosensors for the analysis of real biological samples with analytical features comparable to conventional modified electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call