Abstract

High-performance SiOC(Fe) wave-absorbing ceramics, containing a large number of carbon nanowires, were successfully prepared using a combination of photopolymerization 3D printing technology and the polymer-derived ceramic pyrolysis method. By employing an optimized segmented slow heating scheme with extended holding time, the pyrolysis of SiOC(Fe) ceramics at 1000 °C facilitated the growth of carbon nanowires, Fe3C and SiO2 grains. These carbon nanowires were interlaced and interconnected within the samples, forming abundant conductive networks. This highly conducive network efficiently converted electromagnetic energy into thermal energy, effectively dissipating electromagnetic waves, and consequently enhancing the microwave absorption performance of ceramics. Moreover, this approach not only reduced ceramic cracks but also improved the dielectric loss performance of the materials, achieving a minimum reflectivity value of −35.72 dB. The SiOC(Fe) ceramics added with 5 wt% VcFe effectively enhanced the magnetic loss of the material, reduced the difference between the relative complex permeability (μr) and the relative complex dielectric constant (εr), and improved the impedance matching between the material surface and air, thereby further improving its microwave absorption performance. This resulted in an increase in the maximum effective absorption bandwidth of the material to 12.7 GHz at 5 mm. This study offers a promising solution for the preparation of ceramic matrix composite materials incorporating carbon nanowires, magnetic particles and ceramic precursors, which would be potentially valuable for radar detection and sensor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call