Abstract

Multiple metals doped polymer-derived SiOC ceramics with octet truss structure were prepared by employing a photosensitive methyl-silsesquioxane as preceramic polymer through sol-gel method and Digital Light Processing 3D printing. The physical and chemical properties of the preceramic polymers and printed octet truss structure SiOC ceramics were investigated. Results show that the organosilicon preceramic polymers have outstanding photocuring properties and could transform into amorphous SiOC ceramics at 800–1200 °C. It is illustrated that the excellent mechanical properties of SiOC ceramics with octet truss structure (after 3D printing and pyrolysis) are attributed to the metal elements pinning in the amorphous matrix on the atomic level. Doping other metal elements such as Fe, Ni, Co, Pt, etc, is thought to bring promising properties for the lattice structure SiOC ceramics and potentially further expand its applications in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.