Abstract

A designfor an incident-beam collimator for the Paris-Edinburgh pressure cell is described here. This designcan be fabricated from reaction-bonded B4C but also through fast turnaround, inexpensive 3D-printing. 3D-printing thereby also offers the opportunity of composite collimators whereby the tip closest to the sample can exhibit even better neutronic characteristics. Here, we characterize four such collimators: one from reaction-bonded B4C, one 3D-printed and fully infiltrated with cyanoacrylate, a glue, one with a glue-free tip, and one with a tip made from enriched 10B4C. The collimators are evaluated on the Spallation Neutrons and Pressure Diffractometer of the Spallation Neutron Source and the Wide-Angle Neutron Diffractometer at the High Flux Isotope Reactor, both at Oak Ridge National Laboratory. This work clearly shows that 3D-printed collimators perform well and also that composite collimators improve performance even further. Beyond use in the Paris-Edinburgh cell, these findings also open new avenues for collimator designs as clearly more complex shapes are possible through 3D printing. An example of such is shown here with a collimator made for single-crystal samples measured inside a diamond anvil cell. These developments are expected to be highly advantageous for future experimentation in high pressure and other extreme environments and even for the designand deployment of new neutron scattering instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.