Abstract

Three-dimensional pharmacophore models were generated for A2A and A2B adenosine receptors (ARs) based on highly selective A2A and A2B antagonists using the Catalyst program. The best pharmacophore model for selective A2A antagonists (Hypo-A2A) was obtained through a careful validation process. Four features contained in Hypo-A2A (one ring aromatic feature (R), one positively ionizable feature (P), one hydrogen bond acceptor lipid feature (L), and one hydrophobic feature (H)) seem to be essential for antagonists in terms of binding activity and A2A AR selectivity. The best pharmacophore model for selective A2B antagonists (Hypo-A2B) was elaborated by modifying the Catalyst common features (HipHop) hypotheses generated from the selective A2B antagonists training set. Hypo-A2B also consists of four features: one ring aromatic feature (R), one hydrophobic aliphatic feature (Z), and two hydrogen bond acceptor lipid features (L). All features play an important role in A2B AR binding affinity and are essential for A2B selectivity. Both A2A and A2B pharmacophore models have been validated toward a wide set of test molecules containing structurally diverse selective antagonists of all AR subtypes. They are capable of identifying correspondingly high potent antagonists and differentiating antagonists between subtypes. The results of our study will act as a valuable tool for retrieving structurally diverse compounds with desired biological activities and designing novel selective adenosine receptor ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.