Abstract

Path planning is the key technology for UAV to achieve autonomous flight. Considering the shortcomings of path planning based on the conventional potential field method, this paper proposes an improved optimization algorithm based on the artificial potential field method and extends it to three-dimensional space to better achieve flight constrained 3D online path planning for UAVs. The algorithm is improved and optimized aiming at the three problems of goal nonreachable with obstacle nearby (GNWON), easy to fall into local minimum, and path oscillation in traditional artificial potential field method. First, an improved potential field function with relative distance is used to solve the GNWON, and an optimized repulsive potential field calculation method based on different obstacles or threat models is proposed to optimize the planned path. Secondly, in order to make the drone jump out of the local minimum trap, a method of setting heuristic sub-target points is proposed. For local path oscillation, a method using memory sum force was proposed to improve the oscillation. The simulation results show that the improved optimization algorithm in this paper effectively makes up for the shortcomings of the traditional artificial potential field method, and the designed 3D online path planning algorithm for the UAV is practical and feasible.

Highlights

  • 验证 本文在第二部分给出了不同障碍威胁的模型, 并提出了一种基于不同障碍模型的势场计算方法, 本小节对其进行仿真验证。 图 5 至 7 分别为无人机 在遇到半球体雷达威胁模型或球体障碍、圆锥山丘 模型、圆柱高炮威胁模型的飞行路径仿真实验。 仿 真中选用改进斥力势场函数,并加入合理记忆因子 的势场模型。 仿真设定参数为: katt = 8,krep = 20,n = 0.7,ρo = 2 km,λ1 = 0.7,λ2 = 0.3,l = 0.2 km。 图 6 终点为( 13,13,8) km;障碍威胁的球心坐 标分别为(6,4,0) km 和( 10,10,8) km,半径分别为 3.5 km和 2 km。 图 7 中终点为(11,11,7) km,底面 圆心坐标分别为(7,8,0) km 和( 3,3,0) km,半径为 4 km 和 1 km,高为 8 km 和 1

  • Obstacle Avoidance Path Planning for UAV Based on Artificial Potential Field Im⁃ proved by Collision Cone[ J]

  • Considering the shortcomings of path planning based on the conventional potential field method, this paper proposes an improved optimization al⁃ gorithm based on the artificial potential field method and extends it to three⁃dimensional space to better achieve flight constrained 3D online path planning for UAVs

Read more

Summary

Introduction

验证 本文在第二部分给出了不同障碍威胁的模型, 并提出了一种基于不同障碍模型的势场计算方法, 本小节对其进行仿真验证。 图 5 至 7 分别为无人机 在遇到半球体雷达威胁模型或球体障碍、圆锥山丘 模型、圆柱高炮威胁模型的飞行路径仿真实验。 仿 真中选用改进斥力势场函数,并加入合理记忆因子 的势场模型。 仿真设定参数为: katt = 8,krep = 20,n = 0.7,ρo = 2 km,λ1 = 0.7,λ2 = 0.3,l = 0.2 km。 图 6 终点为( 13,13,8) km;障碍威胁的球心坐 标分别为(6,4,0) km 和( 10,10,8) km,半径分别为 3.5 km和 2 km。 图 7 中终点为(11,11,7) km,底面 圆心坐标分别为(7,8,0) km 和( 3,3,0) km,半径为 4 km 和 1 km,高为 8 km 和 1. 仿真中设定势场参数为 katt = 8,krep = 20,n = 0.7, ρo = 2 km,l = 0.2 km。 无人机起始点为(0,0,0) km, 最终目标点为(22,22,5) km。 为了充分验证算法的有效性,在仿真中建立了 仿真中,设定势场仿真参数为,katt = 8,krep = 20, n = 0.7,ρo = 2 km,l = 0.2 km。 在加入记忆因子的改 进势场模型中,记忆因子的取值设定为 λ1 = 0.7,λ2 = 0.3。 图 和图 对 2 种算法进行了飞行路径仿 真。 图 为 2 种算法在出现局部震荡后,相邻路径 点之间的合力角度变化量,由于合力方向引导无人 机的飞行路径方向,因此决定着相邻路径点间的震 荡幅度。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call