Abstract
Measuring displacements of strike-slip paleoearthquakes from trenching excavations requires detailed 3D trenching excavations. Here a new methodology utilizing an iOS based laser scanner and structure-from-motion is used to reconstruct stratigraphy and trace a displaced fluvial channel sequence across the Dog Valley fault in Northeastern California. The Dog Valley fault is a left-lateral strike slip fault in the northern Walker Lane. The northern Walker Lane accommodates ~5-7 mm/yr of dextral shear; however, the relative rates of deformation and earthquake history of the fault have not been previously assessed. Here, we present geomorphic mapping observations and preliminary paleoseismic trenching results from the Dog Valley fault. Lidar data reveal a clear east-northeast striking fault trace that extends about ~25 km from the Prosser Creek drainage west of the Polaris Fault near Highway 89 to the northwest flank of Peavine Mountain. The main trace of the fault appears to project through Stampede dam. Youthful fault scarps are visible along much of the fault, with alternating northwest- and southeast-facing scarps. Clear lateral displacements are largely absent along the fault, however right-stepping fault strands, sidehill benches, linear valleys and ridges, and alternating scarp facing directions are all consistent with left-lateral strike slip displacement. Stratigraphic and structural relations exposed in the Dog Valley fault trench show clear truncations and tilting of bedded fluvial and peat deposits and provide evidence for the occurrence of two Holocene earthquakes: the most recent earthquake postdates ~8 ka, and an earlier earthquake is inferred to have occurred between 8491-8345 cal. ybp. Based on 3D excavations of a prominent channel margin, the most recent earthquake was associated with ~ 115 cm of left-lateral displacement, corresponding to an M6.7 earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.