Abstract

The performance of electronic devices, such as dynamic random access memories, is degraded by contamination due to impurity atoms as well as crystalline imperfections created during processing. The evaluation of those degradation causes is generally done using an analytical transmission electron microscope. The information obtained, however, is limited to two-dimensional images of the specimen as seen from a single direction. Advanced semiconductor devices with finer-pattern structures are expected to exhibit larger fluctuations in device performance due to the spatial distribution of the faults. A new method has thus been examined to determine the atomic species and to reconstruct three-dimensional (3-D) images of the specimen structure by using high-angle hollow-cone dark-field transmission electron microscopy (HADF-TEM).A incident angle controller was added to a conventional TEM to control the electron-beam deflection coils. This enables the incident electron beam to be inclined and rotated, providing hollow-cone illumination of the specimen, as shown in Fig. 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call