Abstract

Recently the design of the divertor tokamak test (DTT) Facility divertor has been modified and consolidated. The new divertor design presents significant geometrical differences compared to the previous ITER-like one, including the presence of a more flattened dome shape. This paper presents a complete 3D numerical analysis of the neutral gas dynamics inside the DTT subdivertor area for the latest divertor design. The analysis has been performed based on the direct simulation Monte Carlo method by applying the DIVGAS simulator code. SOLEDGE2D-EIRENE plasma simulations have been performed for a deuterium plasma scenario at the maximum additional power in partially detached condition achieved by neon impurity seeding and the extracted information about the neutral particles has been imposed as incoming boundary conditions. The pumping efficiency of the DTT divertor is examined by considering various cases with respect to the pumping probability and the effect of the toroidal and poloidal leakages is quantified. The results show that a significant percentage of the incoming flux of neutrals returns back to the plasma site through the entry gaps (60% for deuterium and 40% for neon), and, consequentially, only a small percentage (∼2%–15%) of the incoming flux can be pumped out from the system. The toroidal leakages affect significantly the pumping performance of the divertor causing a significant decrease in the pumped flux (and also in the pressure at the pumping opening) about 37%–47% and 43%–56% for deuterium and neon respectively. It is discussed how many pumping ports are needed depending on the achievable pumping performance per port. The number can be reduced by closing the toroidal gaps. The analysis shows that enlarging the poloidal gaps by a factor of two causes a significant increase in the poloidal flux losses by a factor 1.7. It is also illustrated how the presence of the cooling pipes leads to conductance losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.