Abstract
Being extensively used in metallurgy, rotating magnetic fields are also becoming increasingly interesting for application in crystal growth, where they are intended to act by stabilizing the melt flow. For this purpose, it is important to understand the basic interactions of the magnetically induced flow and other flow components like time‐dependent buoyant convection. So a three‐dimensional finite volume method was developed in order to numerically study the effect of a rotating magnetic field on convection in a cylindrical melt volume. The equations of mass, momentum, and heat transport are solved together with the potential equations describing the electromagnetic field. The numerical computation of the Lorenz force distribution is validated by comparison with an analytical solution. The effects of magnetic field parameters on the temperature distributions and the flow patterns in the considered configurations are analysed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have