Abstract

Digital reconstruction or tracing of 3D neuron is essential for understanding the brain functions. While existing automatic tracing algorithms work well for the clean neuronal image with a single neuron, they are not robust to trace the neuron surrounded by nerve fibers. We propose a 3D U-Net-based network, namely 3D U-Net Plus, to segment the neuron from the surrounding fibers before the application of tracing algorithms. All the images in BigNeuron, the biggest available neuronal image dataset, contain clean neurons with no interference of nerve fibers, which are not practical to train the segmentation network. Based upon the BigNeuron images, we synthesize a SYNethic TAngled NEuronal Image dataset (SYNTANEI) to train the proposed network, by fusing the neurons with extracted nerve fibers. Due to the adoption of dropout, àtrous convolution and Àtrous Spatial Pyramid Pooling (ASPP), experimental results on the synthetic and real tangled neuronal images show that the proposed 3D U-Net Plus network achieved very promising segmentation results. The neurons reconstructed by the tracing algorithm using the segmentation result match significantly better with the ground truth than that using the original images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.