Abstract

A reasonable grasping strategy is a prerequisite for the successful grasping of a target, and it is also a basic condition for the wide application of robots. Presently, mainstream grippers on the market are divided into two-finger grippers and three-finger grippers. According to human grasping experience, the stability of three-finger grippers is much better than that of two-finger grippers. Therefore, this paper’s focus is on the three-finger grasping strategy generation method based on the DeepLab V3+ algorithm. DeepLab V3+ uses the atrous convolution kernel and the atrous spatial pyramid pooling (ASPP) architecture based on atrous convolution. The atrous convolution kernel can adjust the field-of-view of the filter layer by changing the convolution rate. In addition, ASPP can effectively capture multi-scale information, based on the parallel connection of multiple convolution rates of atrous convolutional layers, so that the model performs better on multi-scale objects. The article innovatively uses the DeepLab V3+ algorithm to generate the grasp strategy of a target and optimizes the atrous convolution parameter values of ASPP. This study used the Cornell Grasp dataset to train and verify the model. At the same time, a smaller and more complex dataset of 60 was produced according to the actual situation. Upon testing, good experimental results were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call