Abstract

Electroporation has been one of the most commonly used physical methods for gene/drug delivery. Compared to other nonviral counterparts, electroporation enables optimization of delivery efficiency by tuning the electric field applied on cells. Commercial electroporation, however, results in stochastic transfection and significant cellular damage mostly due to its "bulk" environment. In this chapter, we introduce nanoelectroporation (NEP) which has demonstrated living cell transfection in a highly controllable manner. In NEP, the electric field can be precisely focused on a single cell positioned on nanochannels. Safe single-cell electroporation as well as "electrophoretic" molecular delivery can be achieved on the same device. This system achieves significantly higher transfection efficiency and cellular viability than commercial systems. This device is unique in that it can efficiently deliver genetic molecules (e.g., DNAs, RNAs) that exceed 10kbp in size. The NEP device based on a 3D nanochannel array prototype was fabricated using cleanroom techniques. For achieving precise cell to nanochannel pairing, three on-chip high-throughput manipulation technologies were developed, that is, magnetic tweezers (MT), dielectrophoresis (DEP), and thin-film microfluidics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call