Abstract
The Shangfanggou Mo–Fe deposit is a typical and giant porphyry–skarn deposit located in the East Qinling–Dabie molybdenum (Mo) polymetallic metallogenic belt in the southern margin of the North China Block. In this paper, three-dimensional (3D) multi-parameter geological modeling and microanalysis are used to discuss the mineralization and oxidation transformation process of molybdenite during the supergene stage. Meanwhile, from macro to micro, the temporal–spatial–genetic correlation and exploration constraints are also established by 3D geological modeling of industrial Mo orebodies and Mo oxide orebodies. SEM-EDS and EPMA-aided analyses indicate the oxidation products of molybdenite are dominated by tungsten–powellite at the supergene stage. Thus, a series of oxidation processes from molybdenite to tungsten–powellite are obtained after the precipitation of molybdenite; eventually, a special genetic model of the Shangfanggou high oxidation rate Mo deposit is formed. Oxygen fugacity reduction and an acid environment play an important part in the precipitation of molybdenite: (1) During the oxidation process, molybdenite is first oxidized to a MoO2·SO4 complex ion and then reacts with a carbonate solution to precipitate powethite, in which W and Mo elements can be substituted by complete isomorphism, forming a unique secondary oxide orebody dominated by tungsten–powellite. (2) Under hydrothermal action, Mo4+ can be oxidized to jordisite in the strong acid reduction environment at low temperature and room temperature during the hydrothermal mineralization stage. Ilsemannite is the oxidation product, which can be further oxidized to molybdite.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have