Abstract

BackgroundMagnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water fraction (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy in mice and children, demonstrating its potential applicability in animal and human studies.Methods3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencephalopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was carried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The associations between ‘MWF and PLP’ and ‘MWF and age’ were evaluated in C57BL/6 mice. MWF values were compared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected and the association between MWF and age was assessed.ResultsIn 35 C57BL/6 mice (age range; 3 weeks–48 weeks), MWF showed positive relations with PLP immunoreactivity in the corpus callosum (β = 0.0006, P = 0.04) and cortex (β = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF showed positive relations with PLP immunoreactivity (β = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum (β = 0.0022, P < 0.001) and cortex (β = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 children (median age, 126 months; range, 0–199 months) were evaluated and their MWF values according to age showed the best fit for the third-order regression model (adjusted R2 range, 0.44–0.94, P < 0.001).ConclusionMWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystrophy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain myelin content in both mice and humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call