7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.actamat.2024.119874
Copy DOIJournal: Acta Materialia | Publication Date: Mar 29, 2024 |
Citations: 3 |
Precipitation hardening is a well-known phenomenon which is widely harnessed in alloy design strategy. In particular, the microstructural features such as shape, size, precipitate number density and volume fraction determine the mechanical behaviour of materials. During service, the morphology of precipitates sometimes achieves a complex 3D shape upon displaying branching and/or splitting patterns. Unfortunately, the detailed information about this intricate morphology cannot be retrieved through traditional experimental techniques based on 2D visualization. Here, we report the implementation of a 3D analysis technique combining Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) tomography to visualize the atypical petal-like morphology of Fe-rich precipitates in a Cu-Fe alloy. Using Phase-Field modelling (PFM), we identify the mechanism responsible for the unusual morphologies of Fe-rich particles. Our work highlights the significance of 3D characterization of precipitates and provides a fascinating pathway for refining understanding of precipitation mechanisms in metals and alloys.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.