Abstract

Lithium vanadium oxide (LiVO211More precisely, it is “Li1+xV1−xO2 (x>0)”. But “LiVO2” is used throughout the text for brevity [1].) holds the potential promise to replace graphite as an anode material in commercial Li-ion batteries as it doubles the volumetric energy density compared to graphite but can still operate at low voltage (~0.1V vs. Li/Li+). Its degradation mechanism was investigated using a synchrotron X-ray nano-tomography technique to image the LiVO2 in three dimensions (3D). In particular an oxidation effect is discussed by a direct visualization and quantification of the 3D microstructure of the LiVO2 before and after being exposed to the air, which results in the oxidation of the LiVO2. After being exposed to air, an oxidation layer with thickness ~120–240nm was observed at the interface of the LiVO2 particles and the binders/pores. While the total volume of LiVO2 remains relatively constant before and after oxidation, the particle size reduces, which is consistent with crack growth possibly due to the local exothermal oxidation reactions, accompanied by phase transition at an elevated temperature. The findings confirm the air-sensitivity of LiVO2 observed indirectly in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.