Abstract
ABSTRACTIn the previous study, from the viewpoint of surface modification technology, we considered a quasi-2D suspension in thermodynamic equilibrium in order to investigate the characteristics of magnetic cubic particles on a material surface. The present study has been expanded to include 3D Monte Carlo simulations of a suspension of magnetic cubic particles in order to discuss a regime change in the structures of cubic particle aggregates. We attempt to elucidate the dependence of a regime change in the aggregate structures on a variety of factors. The main results obtained here are summarised as follows. If the magnetic interaction strength is sufficiently large, closely packed clusters are formed by repeat and expansion of a cluster unit composed of eight particles, which may be the most preferred configuration as it gives rise to a minimum energy. A regime change in the internal structure of aggregates appears in a narrow range with increasing magnetic interaction strength. As the applied magnetic field strength is increased, closely packed clusters collapse and are transformed into wall-like clusters that are formed along the magnetic field direction. An increase in the volumetric fraction of particles induces a regime change from thick chain-like clusters to the formation of wall-like clusters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have