Abstract

Three-dimensional Mineral Prospectivity Mapping (3DMPM) is an innovative approach to mineral exploration that combines multiple geological data sources to create a three-dimensional (3D) model of a mineral deposit. It provides an accurate representation of the subsurface that can be used to identify areas with mineral potential. These 3D geological models are the typical data source for 3D prospective modeling. Geological data sets from multiple sources are used to construct 3D geological models. Since in practice there is a significant imbalance in the ratio of mineralized to non-mineralized classes, the classification results will be biased in favor of the more observed classes. Borderline-SMOTE (BLSMOTE) is an oversampling technique used to solve the problem of unbalanced datasets and works by generating synthetic data points along the boundary line between the minority and majority classes. This helps to create a more balanced dataset without introducing too much noise. Non-mineralized samples can be generated by randomly selecting non-mineralized locations, which means that uncertainties are generated. In this paper, we take the shallow-forming low-temperature hydrothermal deposit Guizhou Lannigou gold deposit as an example to extract the ore-controlling elements and establish a 3D geological model. A total of 50 training samples are generated using the sampling method described above, and 50 mineralization prospects are generated using Random Forests. A return–risk analysis was used to explore the uncertainties associated with synthetic positive samples and randomly selected negative samples, and to determine the final mineral potential values. Based on the evaluation metrics G-mean and F-value, the model using BLSMOTE outperforms the model without the synthetic algorithm and the models using SMOTE and KMeansSMOTE. The optimal model BLSMOTE18 has an AUC of 0.9288. The methodology also performs superiorly with different levels of class imbalance datasets. Excluding the predictions where the results highly overlap with known deposits, five target zones were circled for the targets using a P-A plot, all of which have obvious metallogenic geological features. Among them, Target1 and Target2 have good potential for mineralization, which is of great significance for future mineral exploration work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call