Abstract

In this study, an efficient method was proposed to establish 3D microstructure model of a Si3N4-bonded SiC ceramic refractory with SiC high volume ratio particles and its failure mechanism under thermal shock was studied based on the established microstructure model. The proposed modeling method based on modified 3D Voronoi tessellation method and “precise shrinkage ratio method” was able to establish 3D geometric model of a SiC ceramic refractory with SiC high volume fraction particles more quickly than usual methods. The modified 3D Voronoi tessellation method generated Voronoi polyhedrons (VPs) limited in finite space perfectly. The proposed “precise shrinkage ratio method” achieved a precise volume fraction of SiC particles in the established microstructure model. The crack initiation and propagation under thermal shock were calculated by employing the extended finite element method (XFEM) on the established microstructure model. The results showed the failure mode on micro-scale clearly and efforts of interface strength on the failure mode were also explored. The proposed modeling method was especially suitable for establishing 3D microstructure models of ceramic composites or isotropic metal-ceramic particle composites with high volume fraction particles and extended the use of VPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.